国家课程标准中的例题

 

1  一次水灾中,大约有20万人的生活受到影响。如果灾情持续一个月,大约需要筹集多少顶帐篷?多少吨粮食?

[说明] 解决此问题需要在一定的假设条件下,进行有理数的运算,最后给出估计。

例如,假定一顶帐篷可以住10个人,需要2万顶;假如要保证一个家庭住一顶帐篷,每个家庭4口人,需要5万顶。假定平均每人每天需要0.4千克粮食,可以估计出每天需要的粮食数,10天需要的和一个月需要的粮食数。

2  估计0.5比哪个大?与1.0比呢?

3  计算:(1;(2+

[说明] 运用二次根式的加、减、乘、除运算法则进行二次根式的四则运算,根号下仅限于数,不要求进行根号下含字母的二次根式的四则运算,如2+等。

4   结合实例解释3a

[说明] 希望学生理解用字母表示的代数式是有一般意义的。a可以表示数量,例如葡萄的价格是每千克3元,则3a 表示买a千克的金额;a可以表示长度,例如,一个等边三角形边长为a,则3a表示这个三角形的周长,等等。

5  利用公式证明例29所显示的运算规律。

[说明]在第二学段的学习中已经发现了如下的运算规律:

15×15=1×2×100+25=225

25×25=2×3×100+25=625

35×35=3×4×100+25=1225

观察后,我们猜测:如果用字母a代表一个正整数,则有如下规律:

         (a×10+5)2= a( a+1)×100+25

但这样的猜测是正确的吗?需要给出证明:

这是一个由具体数值计算到符号公式表达的过程,即由特殊到一般的过程。可以让学生感悟,有些问题是可以通过一般性的证明来验证自己所发现的规律,感悟数学的严谨性,增加学习数学的兴趣。

6   在一个房间里有四条腿的椅子和三条腿的凳子共16个,如果椅子腿和凳子腿数加起来共有60个,有几个椅子和几个凳子?

[说明]这个问题与例32是相同的。事实上,这个问题可以用三种方法建立模型。在第二学段讨论过的方法是基于四则运算,还可以用一元一次方程的方法或二元一次方程组的方法解决。启发学生从不同的角度思考同一个问题,有利于学生进行比较,加深对于模型的理解。

利用一元一次方程解决此问题时,可以引导学生通过具体列表的方式找出规律、建立方程,这样利于学生理解方程的意义,体会建模的过程。假设椅子数为a,则凳子数为16-a,把例32中的表移过来并用字母代替:

椅子数    凳子数       腿的总数

        a =16    16-a =0      4a+3(16-a)=64

        a =15    16-a =1      4a+3(16-a)=63

        a =14    16-a =2      4a+3(16-a)=62

这样,合题意的方程为4a+3(16-a)=60,可以通过尝试的方法,解得a=12,也可以解方程求解。

对于二元一次方程组,则可以直接列方程。假设椅子数为a,凳子数为b,可以得到两个方程a+b=164a+3b=60,用代入法得到4a+3(16-a)=60,求解得到a=12b=4

从上面的讨论可以看到,用四则运算方法,思考最困难,但是结果最直接;用二元一次方程组的方法,思考最简洁,但是计算较繁琐。

在教学过程中,可以结合具体的教学内容使用这个例子,最后进行比较,启发学生思考。

7   估计方程的解。

[说明] 估计方程的解,不仅仅在于求解,也有利于学生直观地探究方程的性质,初步感悟,通过代入数值进行计算也是求方程解的有效途径。一般来说,如果把一个数代入方程左边得到的值为负,把另一个数代入得到的值为正,则在这两个数之间可能有方程的解。根据这个原理,用二分法可以估计方程的解。

分析这个一元二次方程,当x的绝对值较大时,方程的左边必然为正,如-53;当x的绝对值较小时,方程的左边必然为负,如2。那么,在-52之间,以及在23之间方程可能有解。进一步,用同样的道理可以将解的范围缩小,使我们估计的解尽可能精确,如选-52的中间值-1.5代入方程的左边进行计算,如果得到的值为正,则在-1.52之间有解,否则在-5-1.5之间有解。可以借助计算器来完成上述的计算过程。

进一步,教师引导学生用公式法解出方程的解,然后借助计算器求解的近似值,并将得出的近似值与前面的估计值进行比较。

8   小丽去文具店买铅笔和橡皮。铅笔每支0.5元,橡皮每块0.4元。小丽带了2元钱,能买几支铅笔、几块橡皮?

[说明] 对于初中的学生,这个问题是生活常识,但希望学生能通过这个例子学会用数学的思维方式看待生活中的问题。

这是一个求整数解的不等式问题,并且问题是开放的,通过列表具体计算,有助于学生直观理解不等式。

假设买a支铅笔,b块橡皮,可以得到不等式

0.5a + 0.4b2

a = 1时,计算得到b = 3.75,则 b = 3。这样计算,可以建立下面的表格:

       a    0      1     2     3     4

       b    5      3     2     1     0

     金额   2     1.7   1.8   1.9    0

根据上面的表格,小丽可以选择适当的购买方案。

9   小明的父母出去散步,从家走了20分到一个离家900的报亭,母亲随即按原速返回。父亲在报亭看了10分报纸后,用15分返回家。下面的图形中哪一个表示父亲离家后的时间与距离之间的关系?哪一个图形是表示母亲的行走过程?

未标题-3

                      14

10  某书定价8元。如果一次购买10本以上,超过10本部分打八折。分析并表示购书数量与付款金额之间的函数关系。

[说明] 这是一个分段函数,函数的三种表示法均适用于这个例子。一般来说,列表法适用于变量取值是离散的情况;分段函数应当画图,并且关注分段点处函数的变化情况。

可以分组讨论三种方法,然后让学生分析比较。

11  甲乙两地相距20千米。小明上午830骑自行车由甲地去乙地,平均车速为8千米/时;小丽上午1000坐公共汽车也由甲地去乙地,平均车速为40千米/时。分别表示两个人所用时间与距离的函数关系,并回答谁先到达乙地。

[说明] 问题的要点是同时分析两个函数关系。可以启发学生用各种方法来解答第二个问题,在分析、总结学生的解答时,可以把两个函数的图像放在一起进行直观比较。

12   温度的计量。

世界上大部分国家都使用摄氏(ºC),但美、英等国的天气预报仍然使用华氏(ºF)。两种计量之间有如下对应:

ºC

0

10

20

30

40

50

ºF

32

50

68

86

104

122

1)在平面直角坐标系中描述相应的点,观察这些点是否在一条直线上。

2)如果两种计量之间的关系是一次函数,请给出该一次函数表达式。

3)求出华氏0度时摄氏是多少度。(4)华氏温度的值与对应的摄氏温度的值有相等的可能吗?

[说明] 在表中,两个变量对应数值的差之比是一个常数,所以两个变量之间是一次函数关系。摄氏从0度开始,设为横坐标方便。但在求华氏0度对应的摄氏温度时,需要通过函数值来反求自变量的值。在平面直角坐标系中, 该一次函数的图像与直线y = x的交点处的值就是华氏温度的值与摄氏温度的值相等时的值。

13  从一个侧面为正方形的长方体实物中抽象出长方体、长方形、正方形、线段和顶点。

[说明] 学生在日常生活中见到的物体都是立体的,而在纸上画出的图形都是平面的,这是一类很重要的抽象。特别是把物体表面分解,有利于培养学生的空间观念。

14  证明:两直线平行,则同位角相等。

15

 

[说明] 考虑到学生的实际情况,在教学过程中,给出下面证明方法的时间可以酌情处理。

这个证明可以利用反证法完成,一方面使学生了解结论的证明,另一方面可以帮助学生了解反证法。如图15所示,我们希望证明:如果ABCD,那么∠1=∠2。假设∠1≠∠2,过点O作直线AB′,使∠EOB′=∠2。根据“两条直线被第三条直线所截,如果同位角相等,那么两直线平行”这个基本事实,可得AB′∥CD。这样,过点O就有两条直线ABAB′平行于CD,这与基本事实“过直线外一点有且仅有一条直线与这条直线平行”矛盾,说明∠1≠∠2的假设是不对的,于是有∠1=∠2

15  直观阐述基本事实:两组对应边及其夹角分别相等的两个三角形全等。

[说明] 虽然基本事实是不需要证明的,但是启发学生进行直观分析、探索结论的合理性。

          

    

 

 

 

16-1                      16-2

如图16-1所示,一个三角形由六个元素构成,即三条边和三个角,因此,两个三角形如果三条边和三个角分别相等,则这两个三角形全等。问题是,最少几个元素就可以确定三角形从而构成全等条件呢?

观察图16-1中的△ABC,如果对图中的边BC“视而不见”,这样,对∠B和∠C也就“视而不见”了(如图16-2),此时△ABC的形状和大小并不改变。这就是说,ABAC两条边及它们的夹角确定了△ABC的形状和大小,于是可以推断,两边以及这两边的夹角可以确定一个三角形。因此,可以认同“两边及其夹角分别相等的两个三角形全等”这个基本事实。

另外,也可以用图形运动(叠合)的方法确认“两边及其夹角分别相等的两个三角形全等”这个结论。

对于基本事实“两角及其夹边分别相等的两个三角形全等”的直观分析可以借助下面的图17-1和图17-2

       

    

17-1                    17-2

 

可以进一步引导学生思考,为什么“三个角分别相等的两个三角形全等”不能成为基本事实。

对于以上事实的认可,也可以从六个元素中的一个出发,即由少到多进行考虑,通过画图探索出需要几个元素即可确定一个三角形。

16   根据性质对平行四边形、矩形、菱形、正方形分类

[说明] 在第一和第二学段都讨论过分类的问题,通过分类有助于学生把握问题本质,了解研究对象的共性与差异。特别是对于几何图形分类,有利于培养几何直观性和思维的层次性。

分类的关键在于确定分类的标准,在不同的标准下可能会有不同的分类结果。一般来说,分类标准可以由粗到细,即由一个特征发展到多个特征(参见例21)。针对本问题把图形分为两类(其中一类可以是空的,在具体教学过程中不出现空集的概念)的标准可以考虑为:对边平行;对边平行且有一个角为直角;对边平行且四条边相等;对边平行、有一个角为直角、四条边相等。还可以通过对角线建立分类标准,等等。在具体教学过程中,可以启发学生想象,也可以做出实物让学生操作。

17  探索并了解:过圆外一点所画的圆的两条切线的长相等。

[说明] 通过探索和了解此结论的证明,帮助学生体验发现结论到验证结论的过程。

教学中可以参考安排如下的过程:

1)发现结论。在透明纸上画出如图18-1的图:设是⊙的两条切线,是切点。让学生操作:沿直线将图形对折,启发学生思考,或者组织学生交流。学生可以发现:

这是通过实例发现图形性质的过程。启发学生由特殊到一般,通过合情推理推测出切线长定理的结论。

                

      

 

 

 

 

18-1                      18-2

2)证明结论的正确性。如图18-2,连接。因为是⊙的切线,所以,即    和△均为直角三角形。又因为,所以△和△全等。于是有

这是通过演绎推理证明图形性质的过程。

由此可见,合情推理与演绎推理是相辅相成的两种推理形式,都是研究图形性质的有效工具。

上述证明过程没有采用形式化的三段论,但有利于初学者把握证明的条理和说理的逻辑。


18   如果四边形ABCD BEFC都是平行四边形,则四边形AEFD也是平行四边形。某同学根据下述图形对这个命题给出了证明。

                         19

 

证明:因为ABCD是平行四边形

所以  AD=BC        

AB=CD        

      又因为BEFC也是平行四边形

      所以   BC=EF        

             BE=CF        

      由①③得   AD=EF    

      由②④得  AB+BE=DC+CF 

     因为⑤⑥成立,所以四边形AEFD是平行四边形。

    他的考虑全面吗?

[说明] 引导学生判断上述证明过程是否正确,希望学生通过错误的实例,感悟特殊和一般的关系。

19  下面图20-2中的三个三角形是由图20-1中的三角形经过平移、旋转和轴对称得到的,分别指出图形运动的形式,并标出对应的角。

7-2
7-1
 

 

 

 


20-1                        20-2

[说明] 把运动后的结果归纳在一起让学生辨认,有利于学生理解三种图形运动形式的不同之处,从而把握平移、旋转和轴对称的基本特征,体验图形运动是研究图形的有力工具。

20  在直角坐标系中描出下列各点,将各组的点顺次连接起来。观察这个图形,你觉得像什么?

1)(20),(40),(62),(66),(58),(46),(26),(18),(06),(02),(20);(2)(13),(22),(42),(53);

3)(14),(24),(25),(15),(14);

4)(44),(54),(55),(45),(44);

5)(33)。

[说明] 在第二学段已经学习了利用方格纸画直角坐标系,理解整数坐标与格子点的对应关系(参见例38)。在本学段将学习一般的直角坐标系。利用直角坐标系可以把数与图形有机地结合起来,有利于用代数方法研究几何问题,也有利于借助图形直观地探索数量关系的规律性。

这个问题可以进一步扩展:把家乡的地图放在直角坐标系的第一象限内,然后等间隔地画出与坐标轴平行的两组平行线,一边用数字表示,一边用字母表示,然后让学生寻找自己熟悉的地点,并用数字和字母表示出该点。让学生理解,坐标的表示可以是多样的,坐标的核心是对应关系而不是具体表示形式。

67  如何用方向和距离描述下图21中小红家相对于学校的位置?反过来,学校相对于小红家的位置怎样描述呢?

比例尺比例尺

21

 

 

21  设计调查方法。

了解本年级的同学是否喜欢某电视剧。调查的结果适用于学校的全体同学吗?适用于全地区的电视观众吗?如果不适用,应当如何改进调查方法?

[说明] 对于许多问题,不可能、有时也不必要得到与问题有关的所有数据,只要得到一部分数据(样本)就可以对于总体的情况进行估计。很显然,如果得到的样本能够客观地反映问题,则估计就会准确一些,否则估计就会差一些。因此,我们希望寻找一个好的抽取样本的方法,使得样本能够客观地反映问题。在本学段,主要学习简单随机抽样方法,这是收集数据中通用的方法,在一般情况下,我们都假定样本是通过随机的方法得到的。

因为同一个年级的学生差异不大,采用简单随机抽样方法比较合适。可以在上学时在学校门口随机问讯,也可以按学号随机问讯。为了分析方便,需要把问题数字化,如喜欢这部电视剧的记为1,不喜欢的记为0

对于这样的问题,问讯学生数不能少于20人,取40~50人比较合适,取更多的学生当然更好,但需要花费更多的精力。由此可见,一个好的抽样方法不仅希望“精度高”还希望“花费少”。

假设问讯的学生数为n,记录数据的和为m(显然,m为喜欢这部电视剧的人数),则调查结果说明,学生中喜欢这部电视剧的比例为。我们依此估计本年级的同学中喜欢这部电视剧的比例。

用这个数据估计全地区的电视观众喜欢这部电视剧的比例是不合适的,因为学生、成年人、老年人喜欢的电视剧往往不同。为了对全地区的电视观众喜欢这部电视剧的情况进行估计,可以采用分层抽样方法,比如依据年龄分层,需要知道各年龄段人口的比例,按照比例数分配样本数,而在各个层内则采取随机抽样;或者依据职业分层,等等。教师应该了解分层抽样,在本学段学生只需学习简单随机抽样方法。

22  某个公司有15名工作人员,他们的月工资情况如下表。计算该公司的月工资的平均数、中位数和众数,并分别解释结果的实际意义。

 

职务

经理

副经理

职员

人数

1

2

12

月工资/

5000

2000

800

[说明] 平均数、中位数和众数都是刻画数据的集中趋势的方法,因为方法不同,得到的结论也可能不同。很难说哪一种方法是对的,哪一种方法是错的,我们只能说,能够更客观地反映实际背景的方法要更好一些。在这组数据中有差异较大的数据,这会导致平均数较大,因此,用中位数或众数要比用平均数更客观一些。

不难计算出该公司月工资的中位数和众数均为800元。而

月工资的平均数= 加权平均(可以看成是加权平均)

              = 5000×+2000×+800×

= 1240(元)。

因此,加权平均往往就是总体平均,其中的权是数据对应的比例。

23  如果还有一个公司也有15名工作人员,他们的月工资情况如下表。参照例69,比较两个公司的月工资状况。

职务

经理

副经理

职员

人数

1

2

12

月工资/

3000

1800

1000

[说明]容易计算,这个公司的月平均工资也是1240元。但是两个公司月工资的方差相差很大,通过计算可以得到:例69中数据的方差为1174400,本例中数据的方差为294400,两个方差相差4倍。可以让学生知道,进一步学习“统计与概率”,将会得到“两个方差有非常显著的差异”的结论。

24   比较自己班级与别的班级同学的身高状况。

[说明]对于两个班级学生身高状况比较,通常可以通过平均值来判断,但有时候仅仅通过平均数是不够的,如果一个班同学之间身高差异很大,而另一个班同学之间身高差异很小,即使前一个班的平均高一些,也不能说这个班的整体状况很好。因此,在判断身高状况时,不仅要看平均值,还需要参考方差。

进一步,可以引导学生逐渐深入地进行数据分析,可以要求学生把身高分段,画出频数直方图,并引导学生讨论,通过直方图是否能得到更多的信息。

25  下表给出了我国1992~2004年国内生产总值(GDP)。在直角坐标系上描出坐标(年,GDP),并试用直线表示发展趋势。

1992~2004中国GDP变化表(亿元)

年份

1992

1993

1994

1995

1996

1997

1998

GDP

23938

34634

46759

58478

67885

74463

78345

年份

1999

2000

2001

2002

2003

2004

 

GDP

82067

89468

97315

105172

117390

136876

 

 

 

 

 

 

[说明] 在现实生活中,有许多数据是与时间有关的,因此这些数据会呈现发展趋势。学生应当能够理解报刊书籍中的这类数据的表达,包括表格、描点、折线图、趋势图等,并且尝试自己表达分析。

对于上述数据,学生应当会描点,虽然这时直角坐标系的度量单位与书本上教的是不一样的,但是只要刻度之间的比例关系一致,表达就是合理的,让学生感悟到:对于实际问题往往需要具体问题具体分析,而不能单纯地套用书本上学到的知识。因为描点呈现线性增长趋势,可以进一步引导学生利用直线来表示这种趋势、预测未来经济发展,感悟变量的随机性。

 

567

                          22

对于“用直线表示发展趋势”的问题,原则上可以画出很多条直线,教师可以引导学生思考和讨论如何画出合适的直线、如何制定“合适直线”的标准,并且告诉学生,在高中阶段“统计与概率”的学习中将会解决这个问题,引发学生的学习兴趣。

这个例子可以举一反三,不一定局限与时间有关的数据,比如,学生身高与体重的关系,同一种树的树叶长与宽的关系(参见例79)。也可以组织学生查阅资料,探究进出口总量与GDP的关系,人均收入与GDP的关系,等等。

26 将下面这些卡片混在一起,从中任意选取一张卡片,这张卡片是船的概率是多少?是车的呢?

 

 

 

 

 


                      23

[说明] 这是例42的继续。学生已经能够理解:任意选取一张卡片,这张卡片是船的可能性比是车的可能性大,现在应当明确地知道其概率分别是

这个例子可以举一反三,如转动转盘,当转盘停止时指针指向某一特定部分的概率;一个袋子里有几种颜色、数量不同的球,随机摸出某种颜色球的概率,等等。

27  分析掷两个骰子点数之和的可能性的大小。

[说明] 这个问题看起来很难,无从下手。事实上,这也是简单事件的问题,利用例10的图,可以得到结论:对应的格子越多可能性越大。比如,点子之和为7的可能性最大,为2或者12 的可能性最小。

28  直觉的误导。

有一张8 cm8 cm的正方形的纸片,面积是64 cm2。把这张纸片按图24-1所示剪开,把剪出的4个小块按图24-2所示重新拼合,这样就得到了一个长为13cm,宽为5cm的长方形,面积是65 cm2。这是可能的吗?

 

 

 

 

 

 

 

 


24-1                         24-2

[说明]这是一个直觉与逻辑不符的例子,希望学生通过学习体会到:对于数学的结论,完全凭借直觉判断是不行的,还需要通过演绎推理来验证。

一般来说,学生应当是不会相信图24-2中纸片的面积是65 cm2,但又无法说明为什么观察的结果是错误的。进一步引导学生思考,如果观察是错误的,那么错误可能出在哪里呢?学生通过逻辑思考,可以推断只有一个可能:图24-2中纸片所示图形不是长方形,因此不能用长方形的面积计算公式来计算面积。然后,可以引导学生实际测量图形左上角或者右下角,发现确实不像是直角。可以告诉学生,这个想法是正确的,但最好能够给出证明,引导学生经历一个由合情推理到演绎推理的过程。

在实际教学中可以引导学生先看图、再让学生分组将图剪开,动手操作发现矛盾(64=65?)。然后,尝试找出理由并尝试证明,最后表达收获。

可以采用如下反证法证明,在证明过程中加深对相似图形的理解。

如图25,过DAC的垂线交ACF。假定图24-2中的图形是长方形,那么图形的右下角就应当是直角,则在图25中有∠1+3=90°。因为∠2+3=90°,则∠1=2。由相似三角形的判定定理,两个直角三角形△ABC与△DEF相似。由相似三角形对应边成比例,应当有:     ,这是不可能的,因此图24-2中的图形不可能是长方形。

由于         ,这个差是很小的,因此会造成我们视觉的误差,把图24-2中的图形判断为长方形。       

25

教学中可以鼓励学生运用不同的方法对此问题进行解释。

29  从年历中想到的。

观察几个年份的年历和月历,思考下面几个问题:

1)在同一年的月历中,哪些月份的“月历表”的排列是基本一致的?

2)有一种计算机病毒叫“黑色的星期五”,当计算机的日期是13日又是星期五时,这种病毒就发作。请找出最近的5个使“黑色的星期五”发作的年、月、日。

3)许多人都认为,“办喜事”最好是“66又是星期六”,可是有人说:“这样的日子是千载难逢”,你同意这种说法吗?你能找出几个“66又是星期六”的具体年份吗?

[说明] 这是一个通过对日常生活观察、发现某些规律的开放性问题,可以根据学生的学习情况,提出不同层次的问题。每一个问题的设计,都是为了让学生学会观察、思考和质疑,提高学生学习数学的兴趣,体会模型思想。

问题(1)是让学生学会观察、学会提问题。这个问题的入手点低,每个学生都能参与,都能有所发现。并且可以培养学生“分类讨论”的意识,分平年和闰年:平年时,110月;2311月;47月;912月的月历表基本一致;闰年时,147月;28月;311月;912月的月历表基本一致。引导学生在貌似杂乱无章中发现规律,利用规律感悟周期现象。

问题(2)中最近的几个“黑色的星期五”是:200921320093132009111320108132011513(随着时间的推移,这个日期会发生变化)。解决问题的方式较多,可以利用对问题(1)发现的规律来思考。也可以充分利用信息工具,如从网上找一个“万年历”的小软件用于观察发现。

问题(3)中最近的几个“66星期六”的日子有1992年、1998年、2009年、2015年、2020年,因此“千载难逢”的说法不对。更加理性的思考是:闰年的周期大体上是“4”,星期的周期是“7”,所以年历的变化周期“大体上”不会超过47 =28。一旦找到了一个“66星期六”的日子,如1992年,“大体上”可以猜测1992+28=2020(年)的66也是星期六。也可以让学生思考:为什么是“大体上”,例外发生的条件是什么?

30  包装盒中的数学。

1)让学生分组收集一些商品的空包装纸盒,请大家分别计算出它们的体积和表面积。

2)请学生将这些盒子拆开,看一看它们是怎样裁剪和粘接出来的。

3)给一个矩形纸板(如A4纸大小),让学生根据上面的发现,裁剪、折叠出一个无盖长方体的盒子,并计算出它的体积。

4)同组同学之间比较结果,分析谁的体积比较大?分析怎样能作一个体积更大(最大)的盒子?(只是实验、比较,不要求证明)。

5)结合一种具体的待包装物体 (5本书或2个茶杯) 设计一个包装盒,使这个盒子恰能包容它们,如有可能实际做出这个盒子。

[说明] 这是一个过程比较长的活动,可以引导学生体验一个比较完整的问题解决过程。让学生收集包装盒、拆开观察是一个很有益的过程,能很好地启发学生如何寻求解决后面问题的思路。问题(5)是一个实际应用,它的结果不唯一,可以交流展示学生的成果,请学生说明制作过程中的关键数据是如何得到的和裁剪方案是如何形成的。

31   看图说故事。

如图26,设计两个不同问题情境,使情境中出现的一对变量,满足图示的函数关系。结合图像,讲出这对变量的变化过程的实际意义。

    

                           26

[说明] 通过这个活动,激发学生自己思考并构造出满足特定关系的函数实例,以加深对函数理解。

学生可以设计多种情境,比如,把这个图看成“小王跑步的s-t图”,可以说出下面的故事:小王以常速度400/分,跑了5分,在原地休息了6分,然后以常速度500/分,跑回出发地。

再比如:有一个容积为2的开口空瓶子,小王以常速度0.4/秒,向这个瓶子注水,灌了5秒后停水,等6秒后,然后以常速度0.5/秒,倒空瓶中水。

老师可以鼓励学生,创设不同的符合函数关系和实际情况的情境。

32  利用树叶的特征对树木分类。

1)收集三种不同树的树叶,每种树叶的数量相同,比如,每种树选10片树叶。

2)分类测量每种树叶子的长和宽,列表记录所得到的数据。

3)分别计算出树叶子的长宽比,估计每种树树叶的长宽比。

4)验证估计的结果。

[说明] 我们可以抓住树的某些特征对树进行分类,本例是利用树叶的数据特征来对树进行分类。

本活动适用本学段的各个年级,要求可以不同。学生先通过数据收集和分析知道一些树的树叶的长与宽的比;对于新采集到的树叶,通过长与宽的比来判断这个树叶是属于哪种树。这一学习活动有利于培养学生的数据分析意识,体会有许多事情,通过数据分析可以抓住本质。知道数据不仅仅是别人提供的,还可以自己收集;对于同一种树,叶子长与宽的比也可能是不一样的,进一步感受数据的随机性;体会只要有足够的数据,就能够分析出一些规律性的结论。

教学中可以作如下设计:

1)建议采用小组活动的形式,学生通过合作交流可以获得较多的数据和信息。

2)为了使分析的结果更加明显,最好选择树叶区别较大的三种(或者更多)树、而每种树选择的树叶的大小要接近,即区别要小一些。

3)“估计每种树树叶的长宽比”的方法可以是多样的,比如,对于每种树的10片树叶都测量了长和宽以后,可以用10个比值的众数,也可以用10个比值的中位数;还可以把长和宽各自相加后,取和的比值,这是10个比值的平均数(教师可以思考:为什么不用通常求平均数的方法计算比值的平均数)。针对这个问题,用平均数是比较合适的。

4)取一片新的树叶,通过这片树叶的长宽之比、参照(3)的估计结果,来判断这片树叶属于哪种树。学生会发现,即使是同一棵树,叶子长与宽的比值恰好等于估计值的可能性也很小,这表现了数据的随机性。可以进一步启发学生考虑一个合理的方案:只要比值大概等于估计值,就可以认为是同一种树,也就是说,需要构造一个以估计值为中心的数值区间,当新取的树叶的长宽比值属于这个区间时就认为属于这个树种。如何合理地构造这个数值区间是重要的,区间太短则可能拒绝同类树种,区间太长则判断的精度就要差。可以考虑下面的方法:当估计值是中位数时,区间由比中位数小两位的比值和比中位数大两位的比值构成;当估计值是平均数时,区间的长度为平均数±σ,或者平均数±2σ,其中σ是样本标准差。让学生感悟决定数值区间的道理(可以告诉学生,进一步的学习,将会从理论上计算区间的长度)。

这个问题可以举一反三。

33   利用几何图形研究代数问题。

对于给定的两个数xy,求使得 (x-b)²+ (y-b)² 达到最小的b,也就是说要找到一个b0,使得对任意的b

(x-b0)² + (y-b0)² (x-b)² + (y-b)²。


[说明] 利用直角坐标系,不仅能够推导出几何图形的代数表达式,还能够利用几何图形来研究代数问题,这是帮助学生建立几何直观的有效途径。

   27

可以把给定的两个数看作数对,对应于二维平面的点(见图27),用A(xy)表示。对于任意数b也可以看作数对(bb),用点B(bb)表示。

回忆关于直线的学习,由图27可以看到,点B(bb)是在通过第一象限、与横坐标倾斜45°角的直线上。我们的问题用几何语言可以表述为:在这条直线上寻找一点,使得这一点到给定点A(xy)的距离最短。显然,这一点应当是点A(xy)到直线的垂足,设其为B(b0b0)。因为

(x-b)²+ (y-b)² = (x-b0+b0-b)²+ (y-b0+b0-b)²

            = [(x-b0)²+ (y-b0)²] + 2[(x-b0) + (y-b0)]( b0-b) + 2(b0-b)²。

由图27,我们可以把上式左边看作线段AB长的平方,上式右边第一个中括号中的两项之和看作线段AB′长的平方,最后一项看作线段BB′长的平方,因为B′是A到直线的垂足,由勾股定理,上式右边第二项应当为0,即(x-b0) + (y-b0)=0,可以得到b0=(x+y)/2

从上面的计算结果可以看到,b0正是xy的算术平均。上面的证明方法和结果可以推广到n个数据,即对于给定的n个数 x1,…,xn,使得

 (x1-b)² ++ (xn-b)²

达到最小的b (x1++xn),这是n个数据的平均数。在“统计与概率”中,通常称上式为离差平方和,如果把n个数据看作样本,那么,样本平均使样本的离差平方和达到最小,因此在“统计与概率”中经常会用到样本平均。